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INTRODUCTION 

The object of this paper is to define, to compare, and to characterize 
three variants of the maximin criterion. More specifically, we ( 1) provide a 
new proof for a classical characterization of maximin, (2) characterize 
leximin by a new set of axioms, and (3) define and characterize a new 
variant of maximin, to be called the protective criterion. 

* This research was conducted while Barbera was visiting the Graduate School of Business 
at Stanford University. He wishes to acknowledge their hospitality as well as financial support 
from the Comision Conjunta Hispano-Norteamericana para la Cooperation Cultural y 
Educativa. Jackson acknowledges the support of a National Science Foundation Graduate 
Fellowship and the Graduate School of Business at Stanford University. We thank Bhaskar 
Dutta, John Roberts, Hugo Sonnenschein, and Alain Trannoy for helpful discussions and 
comments. The insightful comments of two referees and the associate editor of Journal oj 
Economic Theor! led to a reevaluation of our results and their interpretations. 
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We consider situations where different actions must be compared to each 
other in terms of their consequences, which are described by vectors of real 
numbers. Ranking actions is then formally equivalent to ranking vectors, 
and a decision criterion can be seen as a particular binary relation on the 
set of real vectors.’ We shall evaluate decision criteria, and the axioms 
characterizing them, in the light of two alternative interpretations. The first 
interpretation comes from decision theory and is classically known as a 
game against nature (see [9] and [lo]). The actions taken by a decision 
maker have consequences which may differ depending on what state of the 
world prevails; the ith component ai of a vector a is interpreted as the 
utility for the agent if he takes action a and state i occurs. The second inter- 
pretation comes from the welfare economists’ rendition of Rawls’ ideas 
[12], [13]. An agent must evaluate different social arrangements from 
behind a “veil of ignorance” regarding what social position he will be 
assigned to. Then, the ith component ai of a vector a represents the utility’ 
that he will receive if social arrangement a prevails and he is assigned to 
the ith position in society.3 (See also [5], [7], [S], [14], and [15]). 

Actions (or social arrangements) are thus vectors of numbers. It is best 
to think of these numbers as Von Neumann-Morgenstern utilities, charac- 
terizing the agent’s preferences with respect to actions (or social 
arrangements) if the probabihties of different states (or different positions 
in society) were known to him. Our problem is to rank actions (or social 
arrangements) when the agent does not know these probabilities. Given the 
complete parallel between our two interpretations, in the rest of the paper 
we refer to the decision theory framework. 

The basic principle of maximin is to rank actions according to the utility 
levels which they guarantee to the agents involved. Guaranteed levels 
correspond to the smallest components of the vector describing the action. 
Within the present intepretation, only vectors of the same dimension are 
compared to each other.4 A shortcoming of maximin is that it ranks 

’ Decision criteria could just select sets of actions without reference to any ranking of these. 
We concentrate here on those criteria where choices of actions derive from some ranking. 

2 As one referee pointed out, Rawls uses vectors of “primary goods,” not of utilities, to 
describe the consequences of different social arrangements. What we describe here is thus the 
economists’ version of Rawls. 

)A third interpretation would also be possible, again from welfare economics in the 
tradition of Arrow. Here, the consequences of an action do not depend on chance, each action 
has a different impact on the welfare of the n members of society, and the ith component a, of 
action a represents the utility that individual i will receive if action i is taken. However, several 
of the axioms we use in this paper would not be generally acceptable under such a broad 
interpretation, and we will no longer refer to it. 

4 This assumes that we want to compare different courses of action that apply to one society 
of fixed size, or to a decision situation with well-detined contingent states of the world. For a 
different perspective, see Pattanaik and Peleg [ 1 I]. 
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as indifferent vectors (of the same dimension) with the same guaranteed 
utility levels, making no use of additional available information. The 
lexicographical version of maximin (leximin) engages in many more com- 
parisons, based on two pieces of additional information. The first is that 
when minimum guaranteed levels agree, leximin takes into account the 
number of components of each action where the minimum is realized. If 
this does not provide a strict comparison, leximin uses the additional infor- 
mation of the next levels of utility that actions guarantee when the worst 
possible contingencies do not occur (in the welfare interpretation, they may 
give different utilities to those individuals which are just above the strictly 
worse off). This leads to lexicographic comparisons (see [4], [6], and 
[ 111). The protective criterion we propose here is intermediate (see [2] 
and [3]). It also relies on lexicographic comparions at different utility 
levels, but it avoids comparisons based solely on frequency (without 
reference to state), since we feel that these are not in the spirit of maximin. 

The paper is organized as follows. In Section 1 we define maximin, 
leximin, and the protective criterion, we propose different axioms on 
decision criteria, and we characterize the above by combinations of these 
axioms. Section 2 discusses the plausibility of the criteria. 

1. NOTATIONS, DEFINITIONS, AND THE CHARACTERIZATION RESULTS 

Let R denote the set of real numbers and let 9 denote the set of linite- 
dimensional vectors of real numbers. The following notation is adopted. 
For x E 8, dx is the dimension of x, xi is the ith component of x, and xMi is 
the (dx - l)-dimensional vector obtained from x by deleting its ith com- 
ponent; when convenient, we write x = (xi, xP,). Z denotes the set of 
positive integers. For a E R, x E 9, let J(a, x) = (in Z 1 xi d a}, and let 
I.Z(a, x)1 denote the cardinality of .Z(u, x). 

For Y c 9 x W, a binary decision criterion on Y is a subset > of 5. If 
(x, y) E >, we write x >y. The maximin, leximin, and protective criteria 
are binary decision criteria on .G@ x 9. They are defined as follows: 

The Muximin Criterion >Mm 

The Leximin Criterion >Lm. 

X> Lmy++[dx=dy&3u~((IJ(u,x)( 

< Ma Y)l & w’b < a) Mb, XII = IJ(h Y)l )I. 
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The Protective Criterion >p. 

x>.yo[dx=dy&3a3(J(a,x) 

= J(a, Y) 6% (Vb < a) J(h x) = J(b, .Y))l, 

where c denotes proper inclusion. 

The Axioms. 

(0) x>y-+dx=dy. 

This axiom states that only actions of the same dimension are to be com- 
pared. It is consistent with our interpretation that actions to be compared 
only differ by their consequences for the same possible states of the world. 

(1) > is irreflexive, transitive, and asymmetric. 

This axiom leads to the interpretation that x > y means “x is better than 
y,” and requires that “x is better than y” and “y is better than z” imply “x 
is better than 2.” When (1) holds, we define the indifference relation - b> 

x-yo [dx=dy, not x>y and not y>x] 

and the relation 3 by 

x+yo[x>yorx-y] 

Thus, when x and y have the same dimension, but none is better than the 
other, we declare them indifferent, and x+y means that “x is better than 
or indifferent to y.” The relation > is not complete because vectors of 
different sizes are not compared. 

(2) (Symmetry) Let dx = dy= n, and let (T be a permutation of 
{ 1, . . . . n}. 

Then, x > y c* x’ > y’, where (Vi E ( 1 . . . n } ) xi = xCCij and yi = Y,,(~,. This 
axiom states that the labeling of states of the world should not matter in 
the ranking of actions. 

(3) (Domination) x>y+x>y. 

If the consequences of action x are always at least as good as those of 
action y, and sometimes better, then x is preferred toy. 

(4) (Independence of Duplicated States). 

Let x, y be such that, for some i,jE Z, xi = x, and yi = yj. Then 
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This axiom captures the notion that the agent is ignorant of the probability 
that a given state will occur. If the consequences of action x in states i and j 
are identical, and the consequences of action y in the same two states are 
also identical, the axiom declares the distinction between these two states 
to be irrelevant5 (See [l] and [S].) 

(5 ) (Convexity) Whenever dx = dy = dz 

(a) [x>z&~l>z]=+(x+y)>z 

(b) [x~z&y~z]=+(x+y)~~. 

Convexity embodies a notion of risk-aversion: averaging actions, thus 
increasing guaranteed payoffs, leads to new actions that are better than the 
original. 

(6) (Independence of Identical Consequences; The Sure-Thing Prin- 
ciple) 

If Xj=yiy [X>yOX-j>y-i]. 

This axiom requires that, when comparing two actions, only the states of 
the world for which these actions have different consequences should count. 
Notice that the sure-thing principle convenitionally relates preferences on 
lotteries, whereas we do not have probabilities. Moreover, our axiom 
relates preferences between vectors of a given dimension with preferences 
between vectors of a different dimension. However, we think that the 
present “Independence of Identical Consequences” is in the same spirit as 
the conventional sure-thing principle: if two actions have some common 
consequences, it is not these consequences, but rather those which are 
different from one action to the other, which determine the ranking 
between the two. 

(7) (Continuity) Let x’, yk be sequences of vectors. 

[(V’k)xk>yk&xk+x&yk+y]+x~y. 

(8) (Shuffling) Let dx = dy = n and let 0, p be permutations of 
{ 1, . . . . n}. Then, x > y tf x’ > y’, where (Vli~ (1 . ..n}) x~=xb(,) and 
Yl =Yp(i)). 

Let Y={(x,y)~%!xB!l mini{ xi} # min,{ y,} }. 9’ is the set of pairs of 
vectors whose minima are not identical. It is easy to check that our three 
decision criteria coincide on this set: any two vectors of the same dimen- 

5 As pointed out bc a referee, for Axioms (4) and (6) to make sense, it is useful to have the 
Symmetry Axiom (2) hold. Otherwise, ambiguities could arise when relabeling the states after 
deleting or adding components to vectors. 
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sion, the one with the largest minimum is preferred. The following lemma 
characterizes these criteria on Y. 

LEMMA 1. The maximin, leximin, and protective criteria agree on Y. 
They are characterized (on .4p) by Axioms (0)-( 5) (on Y). 

Proof: We first prove that, for a, b, c, dE R, 

(i) [b>a, c>a, d>a] -+ [(c,d)>(a, b)]. 

Suppose not. Then, (a, b)+= (c, d). Let EE (0, cc) be such that b>a+ c, 
c>a+E, and d>a+E. By (3) (c,d)>(a+E, a+&), and then by (l), 
(a,b)+(a+E, a+&). By (4), (a,a,b)+(a+E, a+&, a+&). By (2), 
(a, 6, a)+(a+E, a+&, a+&). By (5), (a, (a+b)/2, (a+b)/2)$(a+E, a+&, 
a+&). By (4) (a, (a + b)/2)> (a+ E, a+ 6). Repeating this argument n 
times we find 

( 
a, (2”-:ia+b +(a+E,a+E). 

) 

Note that, as n + cc, 

(2”-l)a+b 
2” +a. 

Since a + E > a we can find N large enough so that ((2N - 1) a + b)/2N < 
a+&. For this IV, 

(2N-l)a+b 
a, 

2N 
+(a+E,a+E), 

which contradicts Domination (3). This contradiction establishes (i). 
Now, consider a pair of actions in 9, x and y, with d-x= dy. Let 

a=min,{x,} and b= mini{ yi}. Assume without loss of generality that 
b > a, Let d = (26 + a)/3 and e = (b + 2a)/3. Then, by Domination (3), 
y > (d, d, . . . . d). Let c = max{xi}. By Symmetry (2), we can assume without 
loss of generality that a = x1. Then, by Domination (3), (e, c, . . . . c) >x. 
Now, by (i), (d, d) > (e, c). Then, by (4), (d, d, . . . . d) > (e, c, . . . . c). Thus, by 
transitivity ( 1 ), y > x. 

We have thus shown that, if dx= dy, and min,{ yi} > min,{x,}, then 
y > x. This provides an ordering of all pairs (x, y) E 9’ such that dx = dy, 
coinciding with maximin, leximin, and the protective criterion on Y. i 

Even though our criteria agree on 9, they may differ on the way they 
rank vectors of the same dimension having identical minima. The following 
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theorems characterize each of the criteria separately. (See Table I for a 
listing of the relation between each of the axioms and the decision criteria, 
both on 9 and !24?xX.) 

THEOREM 1. Maximin is characterized by Continuity (7) and (0) on 
92 x 9 and Axioms ( 1 j-(5) on 9’. 

Remarks. Notice that Axioms (Ot(5) are only required to hold on Y. 
All but domination are also satisfied on $3 x 9. For example, maximin does 
not rank (0, 1) above (0,O) when it is very compelling to do so. However, 
maximin still respects a weaker version of dominance, namely that xi > yi 
for all i implies that x >y. This weaker property, along with the rest of the 
axioms, is the one used in Milnor’s [lo] characterization. In spite of the 
close similarity between the two axiom systems, the following proof is quite 
different from his. 

Proof: Let x and y be such that dx = dy and mini{xi} = min,( y,}. Let 
{E’} be a sequence of strictly positive real numbers, tending to zero. 

Let 

x: = (x1 + Ek, x2 + Ek, . . . . x, + Ek) 

and 

X” = (X, - Ek, X2 - Ek, . . . . X, - Ek). 

For all k, the pairs (x:, y) and (xk, y) belong to 9’. Thus, by Lemma 1, 
x”, > y and y > x5. By Continuity, x + y and y + x. Thus, by (1 ), neither 
x > y nor y > x. It is easily verified that maximin satisfies the stated 
properties. 1 

TABLE I 

Axiom 

Maximin Leximin Protective criterion 

9 wx9 9 9x9 9 WX9 

(0) Dimension +O ++ + ++ + ++ 
(1) Trans., Assym. ++ + ++ + + ++ 
(2) Symmetry ++ f  ++ + + ++ 
(3) Domination ++ - ++ + + ++ 
(4) Duplicated State ++ + ++ - + ++ 
(5) Convexity ++ + ++ + + ++ 
(6) Sure-Thing + - + ++ + ++ 
(7) Continuity + ++ - - - - 

(8) Shuflling + + + ++ + - 

o ( + ) satisfies; ( - ) does not satisfy; ( + + ) is characterized by 
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THEOREM 2. Leximin is characterized by the Sure-Thing Principle (6), 
Shuffling (8) and (0) on W x 9, and Axioms ( 1 )-( 5) on Y. 

Proof: It is easily checked that the leximin criterion satisfies the 
required properties. Now, let > be any relation on B x 9 satisfying the 
axioms. No pair of vectors is in the relation unless they are of the same 
dimension, by Axiom (0). Consider x and y such that dx = dy = n. By 
Axiom (8) (Shuffling), we can assume without loss of generality that 
xidx;+, and y,<yi+,, for iE (1 . . . n}. Eliminate all components i, where 
xi = yi, and let x’, y’ denote the resulting vectors. By the Sure-Thing Prin- 
ciple (6), x > y *--) x’ > y’. By construction, (x’, y’) E Y. Since Shuftling (8) 
implies Symmetry (2), Lemma 1 applies to x’, y’, an thus x’ >y’ ++ 
min,{x:) > mini{ y,!}. But, 

min {xi> > mm {y,} tf Da3 (144 -XII < Ma, y)I 
I 

8~ (Vb < a) Mb, XII = Mb, Y)I )I. 

Thus, > is the leximin criterion. 1 

THEOREM 3. Axioms (O)-(6) on 9 x 4’ characterize the protective 
criterion. 

Remark. Although Axiom (l), which requires the transitivity of the 
strict relation >, is satisfied by the protective criterion, the relation BP 
implies by the protective criterion is not fully transitive. For example, 
(0, l)+p(l,O) and (1,0)~,(0,2), however, (0,2)>,(0, 1). 

Proof: It is easily checked that the protective criterion satisfies Axioms 
(Ot(4) and (6). 

We now verify that the protective criterion satisfies Axiom (5), convexity. 
Suppose x>,z and y>,,z. Eliminate all states where all three actions 
agree. Denote the resulting vectors x’, y’, and z’. By Axiom (6), x’ >p z’ 
and y’ >p z’. By the definition of the protective criterion we know that for 
any i where z’ does not achieve its minimum, xi > minj{zj} and 
yj >min,{z,!}, which implies t(x\ + yi) > minj{zj}. For any i where z’ 
achieves its minimum, we know that xi > z; and yi > z; and since we have 
eliminated all columns where the three actions agree, then either xl > z,! or 
y; > zi. Thus f(x,! +y,!) > zl. So +(x: + y() > minj{zj} for all i and therefore 
f(x’ + y’) >p z’. By Axiom (6) t(x + y) >p z. A similar argument holds 
for >p. 

Now, let > be any relation on 9? x W satisfying the axioms, and we must 
show that it is >p. No pair of vectors is in the relation unless they are of 
the same dimension, by Axiom (0). We first prove some facts about two- 
dimensional vectors. 
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(ii) Let a, bE R, a > 6. Then, neither (a, b) > (b,a) nor (b,a) > (a, b). 
This follows directly from Symmetry, Transitivity, and Irreflexivity. 

(iii) Let a, b, CE [w, a > b, c > b. Then, neither (a, b) > (b, c) nor 
(b, cl > (a, 6). 

If a = c, (iii) is (ii). Thus, we assume a # c, and let c > a without loss of 
generality. 

Suppose (a, b) > (b, c). By Domination (3), (c, b) > (a, 6); by Transi- 
tivity (l), (c, 6) > (b, c). This contradicts (ii). Suppose (b, c) > (a, b). By 
the Sure-Thing Principle (6), (b, b, c)> (b, a, b). By Symmetry (2) 
Cc, b, b)> (6, a, b). By convexity, ((b + c)/2,b, (b + c-)/Z) > (6, a, b). By 
Axiom (4) (h, (b + c)/2) > (a, b). Repeating the argument iteratively we 
find that (b, ((2” - 1) b + c)/2”) > (a, b), for all n. For N large enough, 
((2’” - 1) b + c)/2N <a, and thus, by Domination (3), (b, a) > 
(b, ( (2N - 1) b + c)/2”‘). By Transitivity (1) (6, a) > (a, b), contradicting (ii). 
This completes the proof of (iii). 

We now extend fact (iii) to cover comparisons of vectors of any size. 

(iv) Let x, y be such that dx = dy, min,{x,} = mini{ y,} =m, and 3i,j 
such that xi = m, yj > m, y, = m. Then, neither x >y nor y z x. 

By Symmetry, we can assume i = 1, j = 2. Suppose x > y. Let 
M= max,{ xi}. By Domination (3), (m, M, . . . . M) > x or (m, M, . . . . M) = x. 
Likewise, y > (y, , m, . . . . m) or ,V = (y, , m, . . . . m). By Transitivity (l), 
(m, M, . . . . M) > ( y , , m, . . . . m), and this would imply (m, M) > (y , , m), by 
(4), contradicting (iii). Therefore, x > y cannot hold. A similar argument 
would prove that y>x is also impossible. 

Now consider an two vectors x and y, with dx = dy. Eliminate all com- 
ponents i where x, =y,, and let x’, y’ denote the resulting vectors. By the 
Sure-Thing Principle, x > y c--t x’ > y’. If min,{x:} = min,( yi}, (iv) applies 
and neither x’ > y’ nor y’ > x’. Thus, in this case, neither x > y nor y > x. If 
mini{ x:} # min,{ y:}, x’ > y’ or y’ > x’ depending on which of the minima 
is greater, and thus either x> y or y>x. Since min,{x:} # min,( yi} iff 
ju 3 [J(u, x) c J(u, y) & (Vb < a) J(b, x) = J(b, y)], > coincides with the 
protective criterion. 1 

2. A COMPARISON OF THE CRITERIA 

Before comparing the three variants of maximin discussed here, let us 
notice their common features and discuss their merits. Lemma 1 brings out 
these common features. Whenever we compare vectors with different 
minimum components, the criteria are characterized by Axioms (O)-(5). 
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We find these axioms to be very compelling. Axioms (3)-(5) deserve special 
comment. Axiom (3) is clearly attractive in both interpretations, and in the 
welfare context it is just a Paretian criterion. Independence of Duplicated 
States (Axiom (4)) is extremely appropriate in a context of uncertainty. If 
the agent is completely ignorant about the probabilities that the different 
states of nature will occur or that he will be assigned to a certain position 
in a given society, the axiom conveys this notion of ignorance. For, if the 
number of states having identical consequences for each action did matter, 
implicit considerations about the frequency of occurrence of these states 
would be influencing the ranking. Convexity represents a restriction that 
we may or may not want to impose on a decision criterion, but it has a 
definite meaning as a condition of risk aversion. 

We turn now to the differences among the three criteria. If continuity is 
desired, then the classical version of maximin emerges. Several of the 
axioms that hold on 9 are also respected on all of 8 x a’, but not 
Domination (3). Thus, for example, (0, 1) is not ranked better than (0,O) 
by maximin, and yet it seems intuitively obvious that it should be, under 
any reasonable interpretation. Maximin violates domination on this larger 
domain because it fails to satisfy the Sure-Thing Principle (6); this is 
probably the most important of the axioms involved in the axiomatization 
of expected utility that is not satisfied by classical maximin, and it is one 
that both leximin and the protective criterion will meet. 

Leximin has been the better studied extension of maximin, expecially as 
an attractive social welfare functional in the spirit of Rawls’ notion of 
justice. The axiomatization that we provide here is a simple one, and it 
differs from the ones we have found in the literature. Once again, several of 
the axioms that are only required on 9 would also carry on to .jR x 9, but 
not all. For example, (3, l)>, (1, 2), yet (1, 2, 2)>, (3, 1, 1). Thus, 
leximin violates Independence of Duplicated States on 9 x 9. This 
violation is quite disturbing since this axiom expresses the idea of 
ignorance about the probability with which states of the world or social 
positions will occur, and violating it amounts to admitting considerations 
about frequencies of states. 

The protective criterion is proposed here as one way of extending 
maximin while respecting at the same time two important axioms that the 
preceding criteria do not jointly satisfy. The protective criterion satisfies the 
Sure-Thing Principle, and at the same time still meets Independence of 
Duplicated States. Thus, it captures the notion of absolute ignorance about 
the probabilities that each state of the world would occur, while respecting 
domination and the rest of the requirements. It extends maximin, but not 
as far as leximin. It is, we feel, the “right” extension of maximin in the 
decision-theory framework and in the economists’ version of Rawls’ idea of 
justice. 
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